针对串联机器人标定系统中的工业机器人基座标系{B}与激光跟踪仪测量坐标系{T}的转换问题,提出一种融合多点拟合法和轴线矢量测量法的坐标系快速转换方法。该融合坐标系快速转换方法首先利用轴线矢量测量法获得旋转矩阵R,然后利用多点拟合法获得位移矢量T,进而得到坐标系转换矩阵BTR。试验结果表明该融合坐标系快速转换方法的测量时间比多点拟合方法减少了184.68s,但综合RMSE(Root mean squared error,RMSE)增加了0.215mm;相比于基于关节圆交点的坐标系转换方法,该方法的综合RMSE降低了0.626mm,测量时间仅增加了51.26s;相比于基于平面拟合转换法,该方法的综合RMSE与测量时间分别降低了2.790mm和120.0s。因此,该融合坐标系快速转换方法的转换精度远优于基于轴线测量的坐标系转换方法,相比于多点拟合法具有相近的转换精度和更好的测量效率。
To solve the problem of inaccurate angle adjustment in the self-assembly process, a new homogenous hybrid modular self-reconfigurable robot-Xmobot is designed. Each module has four rotary joints and a self-turning mechanism. With the proposed self-turning mechanism, the angle adjusting accuracy of the module is increased to 2°, and the relative position adjusting efficiency of the module in the self-assembly process is also improved. The measured maximum moving distance of the proposed module in a gait cycle is 11.0 cm. Aiming at the multiple degree of freedom (MDOF) feature of the proposed module, a motion controller based on the central pattern generator (CPG) is proposed. The control of five joints of the module only requires two CPG oscillators. The CPG-based motion controller has three basic output modes, i. e. the oscillation, the rotation, and the fixed modes. The serpentine and the wheeled movements of the H-shaped robot are simulated, respectively. The results show that the average velocities of the two movements are 15. 2 and 20. 1 m/min, respectively. The proposed CPG-based motion controller is evaluated to be effective.