王海荣 作品数:30 被引量:97 H指数:5 供职机构: 北方民族大学计算机科学与工程学院 更多>> 发文基金: 宁夏回族自治区自然科学基金 国家自然科学基金 更多>> 相关领域: 自动化与计算机技术 文化科学 航空宇航科学技术 理学 更多>>
融合动作退出和软奖励的强化学习知识推理方法 2024年 针对深度强化学习推理方法中存在的过拟合以及稀疏奖励的问题,提出了一种融合动作退出和软奖励的强化学习知识推理方法(knowledge reasoning method of reinforcement learning integrating action withdrawal and soft reward,AS-KRL)。AS-KRL使用门控循环神经网络(GRU)对历史路径信息进行编码,为智能体的动作选择提供当前节点的全局信息;引入动作退出策略随机隐藏部分神经元后再构建策略网络,提高模型路径搜索的成功率,还避免了可能出现的过拟合问题;通过策略网络指导智能体进行动作选择,调用评分函数计算智能体所选三元组的相似度得分,并将所得分数作为智能体的奖励,有效解决稀疏奖励问题。为验证该方法的有效性,在FB15K-237和NELL-995数据集上进行实验,将实验结果与TransE、MINERVA、HRL等9种主流方法进行对比分析,结果表明该方法在链接预测任务上的Hits@k平均提升了0.027,MRR平均提升了0.056。 孙崇 王海荣 荆博祥 马赫关键词:知识推理 融合关联信息与CNN的实体识别研究 2023年 引入外部词汇是提升实体识别效果的有效方法,然而现有的方法未能对词汇的关联字符向量进行表征,从而忽略了字符之间的联系。基于此,提出一种融合关联信息与卷积神经网络(convolutional neural network,CNN)的实体识别方法。在使用SoftLexicon引入外部词汇的基础上,根据字符所对应的外部词汇发现关联字符并以词频方式进行归一,从而与字符、词汇向量融合以构建多特征信息来扩充字符特征表示,之后使用CNN与双向长短期记忆网络联合获取深层信息。在Resume、Weibo和CCKS2017数据集上进行实验,结果表明,相比SoftLexicon方法,所提方法能有效提升实体识别效果。 李明键 李卫军 李卫军关键词:卷积神经网络 渐进式策略的多模态无监督实体对齐方法 2025年 当前的实体对齐方法,虽然利用知识图谱中实体间的结构信息取得了不错的对齐效果,但是忽略了实体间包含的大量侧面信息。这些信息具有唯一性特征,可以用于增强对齐效果。分析了实体侧面信息在实体对齐中的可用性,提出了一种无监督实体对齐方法,使用渐进式策略并融合图文信息。该方法通过融合实体的字面量信息和视觉信息,来增强实体的特征表示;采用双向阈值最近邻算法,过滤掉距离度量过高的实体对;引入渐进式策略,来动态增加相似度阈值,以控制对齐实体对的生成质量和生成速度;定义分配算法,以优化渐进式策略得到的结果。为了验证提出的方法,在DBP15K数据集的ZH_EN、JA_EN、FR_EN子数据集上进行实验,并与PSR、EVA、DATTI等10种方法的结果进行了对比分析。实验结果表明,该方法在ZH_EN和JA_EN子数据集的对齐任务上,Hits@1指标分别达到了95.7%和97.4%,在FR_EN上Hits@10指标达到了99.9%,性能表现较佳。 马赫 王海荣 王艺焱 孙崇 周北京关键词:多模态 图文数据的多级关系分析与挖掘方法 被引量:1 2024年 如何高效挖掘多模态数据间隐藏的语义关联是当前多模态知识抽取的重点任务之一,为更细粒度地挖掘图像与文本数据间关系,提出了一种多级关系分析与挖掘(MRAM)方法,引入BERT-Large模型,提取文本特征构建文本连接图,利用Faster-RCNN网络提取图像特征来学习空间位置关系和语义关系并构建图像连接图,进而完成单模态内部语义关系计算,在此基础上,使用节点切分方法和带多头注意力机制的图卷积网络(GCN-MA)进行局部和全局的图文关系融合。此外,为提升关系挖掘效率,采用了基于注意力机制的连边权重剪枝策略,用以增强重要分支表示,减少冗余信息干扰。在公开的Flickr30K、MSCOCO-1K、MSCOCO-5K数据集上进行方法实验,并与11种方法进行实验结果的对比分析,所提方法在Flickr30K上的平均召回率提高了0.97%和0.57%,在MSCOCO-1K上的平均召回率提高了0.93%和0.63%,在MSCOCO-5K上的平均召回率提高了0.37%和0.93%,实验结果验证了所提方法的有效性。 郭瑞萍 王海荣 王栋关键词:图文数据 基于人脸识别和姿态估计的智能监考模型设计与应用 被引量:3 2023年 针对传统监考存在人工成本高、主观性强等问题,构建基于人脸识别、头部姿态估计和目标检测的智能监考模型。模型通过人脸识别算法进行考生身份验证,设计结合注意力机制的头部姿态估计(channel and spatial-aware wide head pose estimation network,CS-WHENet)方法对考生偷看的异常行为进行检测,并使用深度学习方法及传统方法对考生传递纸条的异常行为进行联合判定。实验结果表明,智能监考模型在模拟真实考场的环境中,对考生身份验证与异常行为检测均有较高的准确率,并能在GPU支持下实现实时检测。通过验证表明,该模型能有效降低监考人员工作成本,实现考场监考公平性。 袁欣瑞 王海荣 王振旭关键词:人脸识别 头部姿态估计 目标检测 运动目标检测 MoMi融合下的数据结构实验模式设计 被引量:5 2018年 针对数据结构实验教学中存在的学生分析及解决问题能力不足、编程基础不扎实、独立完成综合类实验项目质量不高、缺乏实验方法创新等问题,研究分析慕课、微课在教学中的优劣,结合学校实验教学的实际情况,提出融合慕课和微课的MoMi教学模式。 王海荣 刘淼 徐东燕关键词:数据结构 多模态语义协同交互的图文联合命名实体识别方法 被引量:4 2022年 针对现有多模态命名实体识别(Multimodal Named Entity Recognition, MNER)研究中存在的噪声影响和图文语义融合不足问题,本文提出一个多模态语义协同交互的图文联合命名实体识别(Image-Text Joint Named Entity Recognition, ITJNER)模型。ITJNER模型加入图像描述作为额外特征丰富了多模态特征表示,图像描述可以帮助过滤掉从图像特征中引入的噪声并以文本形式总结图像语义信息;还构建了多模态协同交互的多模态语义融合模型,可以加强多模态信息融合,并减少图像信息的语义偏差。在Twitter-2015和Twitter-2017数据集上进行方法实验,分析实验结果并与AdaCAN、UMT、UMGF、Object-AGBAN等方法进行对比。相较于对比方法中的最优方法UMGF,本方法在Twitter-2017数据集上的准确率、召回率、F1值分别提高了0.67%、2.26%、0.93%;在Twitter-2015数据集上,召回率提高了0.19%。实验结果验证了本方法的有效性。 钟维幸 王海荣 王栋 车淼关键词:图文数据 图像描述 PSO-DF:基于高光谱的水稻叶片氮含量估测方法 2024年 水稻叶片氮含量的估测对实现田间施肥高效、水稻高产的目标具有重要意义。提出了一种基于粒子群深度森林的水稻叶片氮素估测方法(Particle Swarm Optimization-Deep Forest,PSODF),通过粒子群优化算法筛选深度森林模型(Deep Forest,DF)参数中最优的级联层估计器数量和估计器中的树数,从而提高深度森林模型在水稻氮素数据集上的回归精度。为验证PSO-DF的有效性,研究采用无人机搭载高光谱图像采集器获取宁夏粳稻高光谱图像,并对同期水稻叶片进行取样、测量、分析,并提取与水稻叶片氮含量相关系数最高的3个特征波段,将其作为光谱特征与水稻氮含量数据进行反演,对PSO-DF、原模型DF以及其他6种常见机器学习算法构建的水稻氮含量估测模型进行了对比。结果表明:PSO-DF算法构建的模型效果优于其他模型,其R2和RMSE指标均明显优于其他模型。 车淼 王海荣 徐玺 孙崇关键词:水稻 高光谱遥感 本体构建方法与应用 被引量:8 2018年 自从本体的概念被广泛地引入计算机领域之后,领域专家和相关机构提出了众多本体的构建方法,但每种方法都有各自的适用领域,且不同的领域知识概念具有不同特点,使得构建方法的实用性和通用性大大降低。笔者在七步法的基础之上结合了高校领域的相关概念实现了一个简单的可推理的领域本体。最后利用Protégé5.0.0自带的推理机结合SWRL规则对所实现本体进行了测试,测试结果显示,七步法适合高校领域本体的构建,且能够根据已有知识获取新知识。 马旭明 王海荣关键词:本体构建方法 七步法 推理机 基于表示学习的实体对齐方法综述 被引量:2 2023年 实体对齐是目前知识融合阶段的主要工作之一,基于表示学习的方法是实体对齐的主要研究方向。首先,通过全面地研究当前代表性的实体对齐技术,总结出这些技术的特征及架构,并提出了一个捕捉这些技术关键特征的框架;然后根据这些技术使用的知识表示模型将其分成2类:基于Trans的技术和基于GNN的技术;给出了2个当前广泛使用的数据集,搭建了11个有代表性的基于TransE的模型和基于GNN的模型,并在DBP15K上的3个跨语言数据集上进行对比实验;评测主流模型和添加属性或字面等不同侧面信息后的模型的对齐效果,为未来大规模单模态乃至多模态知识图谱实体对齐研究提供参考。 马赫 王海荣 周北京 孙崇 徐玺关键词:知识图谱 知识表示