胡晓菡
- 作品数:2 被引量:8H指数:1
- 供职机构:上海交通大学更多>>
- 发文基金:国家自然科学基金国家高技术研究发展计划更多>>
- 相关领域:生物学自动化与计算机技术更多>>
- 全基因组基因-基因相互作用研究现状被引量:8
- 2011年
- 复杂疾病目前正在全球范围流行,极大地影响人类的健康。研究发现,复杂疾病的性状受到多个位点的相互作用影响。目前的全基因组关联分析(Genome-wide association study,GWAS)仅仅解析单个SNP位点对疾病易感性的贡献,单纯依靠这一种策略并不能在寻找复杂疾病的病因上得到根本性的突破。基因-基因相互作用可能是复杂疾病致病的主要因素之一。针对这一点,科学家已经提出了一些检验基因相互作用的算法,包括惩罚logistic回归模型、多因子降维(Multifactor dimensional reduction)、集合关联法(Set-association approach)、贝叶斯网络(Bayesian networks)、随机森林法等。文章首先对目前这些方法做了综述,并指出了其中的不足,包括计算复杂度太高、假设驱动、数据会过度拟合、对低维数据不敏感等,进而简述了一种由笔者所在实验室开发的基于GPU的研究基因相互作用的算法,该算法复杂度低,不需要任何假设,没有边际效应,有很好的稳定性,速度快,适用于进行全基因组范围内的基因-基因相互作用计算。
- 沈佳薇胡晓菡师咏勇
- 关键词:复杂疾病GPU性状易感位点
- CUDA平台下的复杂疾病全基因组基因-基因相互作用研究
- 复杂疾病的全基因组基因-基因扫描可以有效发现多个基因的相互作用对疾病易感性的贡献。但是这种扫描的计算量通常非常巨大,限制了它的实际应用。现代图形处理器(GPU,显卡)已具有非常强大的并行计算能力,同时价格低廉。因此,在这...
- 胡晓菡
- 关键词:CUDA平台复杂疾病全基因组图形处理器
- 文献传递