在传统的基于欧几里德距离函数的轨迹相似性计算过程中,要求轨迹等长且时间点对应,无法度量不等长且有局部时间偏移的轨迹相似性。因此在构造同步轨迹集合过程中产生信息损失较大,影响轨迹数据的可用性。为此,通过引进一种可以度量不等长且有局部时间偏移的轨迹间相似性的DTW(dynamic time warping)距离度量函数,提出一种新的轨迹匿名模型——(k,δ,p)-匿名模型,构造了DTW-TA(dynamic time warping trajectory anonymity)算法。在合成数据集和真实数据集下的实验结果表明,该算法在满足轨迹k-匿名隐私保护的基础上,减少了信息损失,提高了轨迹数据的可用性。
针对IaaS(Infrastructure as a Service)云平台中用户异常行为的检测问题,提出了一种基于用户行为模型和神经网络相结合的异常检测方法.该方法通过构造一种基于时间、地点和事件的用户行为模型,在此基础上建立用户的正常行为模式,并与神经网络算法相结合,将用户当前行为网络输出值与给定阈值进行比较,以此来判断用户的行为是否异常,从而实现用户行为的异常检测.实验结果表明,相比其它类似的用户行为检测方法,该方法能更有效发现用户的异常行为.