黄文雄
- 作品数:1 被引量:6H指数:1
- 供职机构:北京理工大学计算机学院更多>>
- 发文基金:国家自然科学基金更多>>
- 相关领域:自动化与计算机技术更多>>
- 基于支持向量机的多传感器探测目标分类方法被引量:6
- 2013年
- 针对传感器探测的数据常含有噪声,分类算法易受噪声数据干扰、容错能力差而产生错分问题,研究对多传感器探测目标进行分类的方法.提出容噪最小二乘投影双支持向量机(NLSPTSVM),去除离群点,提高容噪性能;通过定义NLSPTSVM置信度,以样本的最小超球体距为依据,根据"越是上层分类器的分类性能对分类模型的推广性能影响越大"的思想,以置信度NLSPTSVM作为二分类器,将NLSPTSVM的降噪过程提前到生成有向图之前,提出分类精度高、容噪性和容错性强的多分类支持向量机——容噪上层择优多路支持向量机(NUMDAG-SVMs).实验表明,NUMDAG-SVMs与同类算法相比具有更优的分类准确率和更强的容噪性和容错性.采用NUMDAG-SVMs对传感器采集的真实数据进行分类,取得了很好的结果.
- 李侃黄文雄黄忠华
- 关键词:多传感器多分类支持向量机容错