2025年4月15日
星期二
|
欢迎来到贵州省图书馆•公共文化服务平台
登录
|
注册
|
进入后台
[
APP下载]
[
APP下载]
扫一扫,既下载
全民阅读
职业技能
专家智库
参考咨询
您的位置:
专家智库
>
>
程高伟
作品数:
1
被引量:2
H指数:1
供职机构:
陕西师范大学计算机科学学院
更多>>
发文基金:
中央高校基本科研业务费专项资金
国家自然科学基金
更多>>
相关领域:
自动化与计算机技术
更多>>
合作作者
吴振强
陕西师范大学计算机科学学院
作品列表
供职机构
相关作者
所获基金
研究领域
题名
作者
机构
关键词
文摘
任意字段
作者
题名
机构
关键词
文摘
任意字段
在结果中检索
文献类型
1篇
中文期刊文章
领域
1篇
自动化与计算...
主题
1篇
推荐系统
1篇
评分
1篇
稀疏性
1篇
协同过滤
1篇
协同过滤算法
1篇
标签
机构
1篇
陕西师范大学
作者
1篇
吴振强
1篇
程高伟
传媒
1篇
计算机技术与...
年份
1篇
2015
共
1
条 记 录,以下是 1-1
全选
清除
导出
排序方式:
相关度排序
被引量排序
时效排序
结合用户评分和项目标签的协同过滤算法
被引量:2
2015年
在信息过载时代,推荐系统能够帮助用户发现感兴趣的内容。协同过滤是推荐系统中最常用的技术,然而传统的协同过滤算法未能充分考虑项目标签对相似度的影响,因而推荐质量不高。文中提出了一种结合用户评分和项目标签的协同过滤算法,算法中关键的相似度计算是对评分相似度和标签相似度的加权,通过加权降低了相似度矩阵的稀疏性,并且保证项目之间只有在共同评分较多且标签相似时才具有较高的相似度,从而使相似度计算更加准确。通过对比实验得出加权系数在0.3-0.5时推荐质量较高,在公开数据集上与传统协同过滤算法的比较结果表明,文中的算法在平均绝对误差上降低了约3%。
程高伟
丁亦喆
吴振强
关键词:
协同过滤
推荐系统
标签
稀疏性
全选
清除
导出
共1页
<
1
>
聚类工具
0
执行
隐藏
清空
用户登录
用户反馈
标题:
*标题长度不超过50
邮箱:
*
反馈意见:
反馈意见字数长度不超过255
验证码:
看不清楚?点击换一张