陶小苗
- 作品数:4 被引量:13H指数:1
- 供职机构:兰州交通大学电子与信息工程学院更多>>
- 发文基金:国家自然科学基金更多>>
- 相关领域:自动化与计算机技术更多>>
- 基于Faster-RCNN改进的目标检测算法
- 2023年
- 以Faster-RCNN目标检测算法为基础,用(1×3+3×1+3×3)非对称卷积块替代Faster-RCNN网络模型的3×3卷积核,提出一种基于Faster-RCNN的改进目标检测算法。首先,将残差网络ResNet作为算法骨干,用于提取图像的特征图(Feature map),将Feature map先通过(1×3+3×1+3×3)的卷积核块之后经过两个1×1的卷积核。其次,利用区域建议网络(Regional proposal network,RPN)获得共享特征层的建议框,把建议框映射到卷积的最后一层Feature map上,通过感兴趣区域池化层(Region of interest,RoI)将不同尺寸的锚框进行归一化。最后,利用探测分类概率(Softmax loss)和探测边框回归(Smooth L1 loss)进行训练。本文使用的是PASCAL_VOC数据集,平均查确率(Mean average precision,mAP)结果表明,相比于原始Faster-RCNN算法,mAP值提高了0.38%,相比于RetinaNet算法,mAP值提高了2.68%,相比于YOLOv4算法,mAP值提高了3.41%。
- 白晨帅邬开俊王迪聪黄涛陶小苗
- 关键词:目标检测算法
- 基于FPGA的音乐流水灯控制系统的设计被引量:1
- 2010年
- 介绍一种基于FPGA的音乐流水灯控制器,采用硬件描述语言对其进行描述,分别实现乐曲的播放和同步流水灯的闪烁。并构建一个SOPC系统,集成LCD模块来显示实时音乐的音阶值和频率强度。最后在Altera公司的FPGA多媒体开发平台DE2上进行实现。
- 陶小苗王紫婷
- 关键词:FPGALCD硬件描述语言
- 基于改进型时间分段网络的视频异常检测被引量:1
- 2022年
- 视频异常检测是计算机视觉领域的一个重要研究课题,广泛应用于道路监控、异常事件监测等方面。考虑到异常行为的外观、运动特征与正常行为存在明显差异,提出一种改进型时间分段网络,利用该网络学习视频中的外观和运动信息,从而对视频异常行为进行预测。为了提取更多的视频信息,将RGB图和RGB帧差图相融合作为输入,以提取RGB图中的外观信息并通过RGB帧差图获得更有效的运动特征。将卷积注意力机制模块加入到时间分段网络模型中,从空间和通道2个不同的维度学习注意力图,利用学习到的注意力权重区分异常和正常的视频片段,同时运用焦点损失函数降低大量简单负样本在训练过程中所占的权重,使得模型更专注于难分类的样本,从而解决视频异常检测中正负样本比例不平衡的问题。实验结果表明,改进型时间分段网络在UCF-Crime和CUHK Avenue数据集上的AUC值分别达到77.6%和83.3%,检测性能优于基准方法 TSN(RGB流)以及ISTL、3D-ConvAE等方法。
- 黄涛邬开俊王迪聪白晨帅陶小苗
- 视频异常检测技术研究进展被引量:11
- 2022年
- 视频异常检测是指对偏离正常行为事件的检测识别,在监控视频中有着广泛的应用。对基于深度学习的视频异常检测算法进行了深入的调查研究和全面的梳理与总结。首先,对视频异常检测相关内容以及异常检测面临的挑战进行了分析;然后,从有监督、半监督和无监督三方面对视频异常检测的相关算法进行了介绍和分析。对三种不同场景下的算法进一步细化分类,将监督场景下的算法划分为二分类和多分类两种方式,将半监督场景下的算法划分为计算异常得分和聚类判别两种方式,将无监督场景下的算法划分为重构判别和预测判别两种方式,并且分析了不同技术的特点和优缺点。介绍了目前在视频异常检测领域常用的数据集,以及检测性能的评估标准,对目前主流的视频异常检测算法性能进行了对比分析。最后,对视频异常检测算法的未来研究方向进行了讨论和展望。
- 邬开俊黄涛王迪聪白晨帅陶小苗
- 关键词:异常检测