为了对铁路系统涉恐事件进行风险管理,遏制铁路系统恐怖袭击事件的发生,提出基于DBSCAN(density-based spatial clustering of applications with noise)算法的铁路系统恐怖袭击风险评估方法。首先对1970—2017年发生的铁路系统恐怖袭击案件进行统计分析,然后采用DBSCAN算法对恐怖袭击发生次数、死亡人数和受伤人数3项风险评价指标进行聚类分析,最终客观计算出几类袭击方式、袭击目标和86个国家的风险。结果表明,该方法的分析过程避免了人工赋值和专家打分策略,评估结果更具客观性和真实性,适用于反恐情报工作的风险评估领域。