提出了一种了基于SURF(speed up robust features)特征匹配的图像拼接算法。SURF方法是一种快速且鲁棒性较好的特征提取算法,用该算法提取图像特征后,使用改进BBF(best bin first)的快速匹配算法来寻找图像间的匹配点;用L-M算法对单应性矩阵进行优化时,本文提出使用梯度误差函数增强对光照变化的鲁棒性;最后采用多分辨率融合方法进行图像融合,有效地消除了拼接痕迹,并保持较高的分辨率。实验结果验证了该算法的高效性,对存在旋转、尺度缩放、视角以及光照变化的图像都具有良好的效果。