张慧娜
- 作品数:1 被引量:11H指数:1
- 供职机构:北京工商大学理学院更多>>
- 发文基金:国家自然科学基金北京市优秀人才培养资助更多>>
- 相关领域:自动化与计算机技术更多>>
- 基于Haar-CNN模型的自然场景图像分类的研究被引量:11
- 2017年
- 研究基于Haar-CNN模型的图像特征提取用于自然场景图像分类的问题.Haar小波变换是图像处理中常见的一种变换,可以提取图像的局部和空间信息,并把彩色图像的颜色、轮廓和纹理信息进行分层次的表达.卷积神经网络(CNN)是一种得到广泛研究与应用的深度学习模型,对图像特征具有很好的表达能力.基于Haar小波变换和CNN模型的优势,提出一种新的图像特征提取方法,即Haar-CNN模型;利用该模型提取得到图像更丰富的特征信息;然后比较基于Haar-CNN和CNN模型提取的自然场景图像特征在分类中的效果,探究Haar-CNN模型对于自然场景图像特征提取的优势.再对比在不同颜色空间上Haar-CNN模型对自然场景图像的分类效果,实验结果表明YCb Cr颜色空间上的分类精度最高,为96.2%,比灰度图像的分类精度提高了7.8%.同时,进一步分析Haar-CNN模型中图像块大小、隐藏层神经元个数、池化区域大小、模型深度等参数对图像分类精度的影响,实验结果表明参数选择对图像分类很重要,合适的参数选择可以提高分类精度.
- 张慧娜李裕梅傅莺莺
- 关键词:图像分类