李轩
- 作品数:2 被引量:13H指数:2
- 供职机构:长春理工大学电子信息工程学院更多>>
- 发文基金:国家重点基础研究发展计划更多>>
- 相关领域:自动化与计算机技术更多>>
- 基于似圆阴影的光学遥感图像油罐检测被引量:7
- 2016年
- 针对光学遥感图像中受阴影干扰的油罐目标识别率低的问题,该文提出一种将改进的视觉显著模型与似圆阴影区域特征检测相结合的由粗到精的油罐目标检测方法。首先建立改进的视觉显著模型,将油罐从复杂背景中粗分离。然后对分离结果中由油罐产生的似圆阴影区域进行精检测,得到疑似油罐目标。再去除阴影,获得油罐目标的初步检测结果。最后基于图搜索策略及先验知识,确定油罐目标并定位油库区域。实验结果表明,该方法对检测光学遥感图像中存在似圆阴影的油罐目标具有较高的鲁棒性和准确率。同时,在不同环境的光学遥感图像中使用该方法可快速准确地定位油库区域。
- 李轩刘云清
- 关键词:光学遥感图像油罐
- 局部显著特征下的光学遥感图像舷靠舰船检测被引量:7
- 2016年
- 目的在光学遥感图像中,针对舷靠舰船灰度和纹理特征与港口相近,传统方法检测效果不理想的问题,提出一种基于局部显著特征的舷靠舰船检测方法。方法首先,对原始图像预处理得到海陆分割后的二值图像;然后,提取二值图像中的直线段作为局部显著特征检测舰船目标;再将直线段提取结果与舰首检测相结合,建立舷靠舰船检测模型;最后,通过计算舰船几何尺寸及环境信息分析确定舰船目标。结果在两幅不同场景的光学遥感图像中验证本文方法并与其他算法进行对比,本文方法识别率可达100%,且不存在误检和漏检情况,相比于其他算法具有一定优势。在舰船背景复杂或停泊朝向不定时,文中方法可有效判别舰船停靠方向并对舰船目标进行正确标记。结论在复杂背景环境及其他干扰下,应用本文方法检测舷靠舰船目标准确率高,鲁棒性强,具有较高适应性。
- 李轩刘云清卞春江毛博年
- 关键词:光学遥感图像目标检测直线段