董乐
- 作品数:2 被引量:12H指数:2
- 供职机构:电子科技大学计算机科学与工程学院更多>>
- 发文基金:国家自然科学基金中央高校基本科研业务费专项资金更多>>
- 相关领域:自动化与计算机技术更多>>
- 基于卷积神经网络的偏色光下植物图像分割方法被引量:10
- 2019年
- 为了解决传统图像分割算法在植物工厂中偏色光植物图像上分割精确度不高、泛化性能差的问题,提出了一种基于卷积神经网络,并结合深度学习技术,对人工偏色光下植物图像进行精确分割的方法。采用该方法,最终在偏色光植物图像原始测试集上达到了91.89%的分割精确度,远超全卷积网络、聚类、阈值、区域生长等分割算法。此外,在不同色光之下的植物图片上进行测试,该方法也较上述其他分割算法有着更好的分割效果和泛化性能。实验结果表明,所提方法能够显著提高偏色光下植物图像分割的精确度,可以应用于实际的植物工厂工程项目当中。
- 张文彬朱敏张宁董乐
- 关键词:植物工厂卷积神经网络图像分割
- 基于区域形状与运动特征的实时行为识别被引量:2
- 2013年
- 提出了一种基于推广的Hu不变矩特征的实时行为识别方法。首先,对Hu不变矩进行改进,使其在离散情况下同时具有平移、旋转和比例不变性。然后,结合运动目标的速度将目标行为刻画成结合Hu矩新特征和速度特征的13维特性向量。其中,Hu矩新特征表征了行为的区域形状特性,速度特征反映了行为的运动特性。随后采用预先定义的一些行为作为先验知识样本训练支持向量机,并最后使用其对待检测行为进行分类以达到行为识别的效果。所提方法计算效率高,能够实时检测人体行为。在处理实拍视频数据的实验中,该方法表现出了理想的处理效率以及识别精度。
- 裴利沈董乐赵雪专任鹏
- 关键词:HU不变矩