The bioreduction of graphene oxide(GO)using environmentally functional bacteria such as Shewanella represents a green approach to produce reduced graphene oxide(rGO).This process differs from the chemical reduction that involves instantaneous molecular reactions.In bioreduction,the contact of bacterial cells and GO is considered the rate-limiting step.To reveal how the bacteria-GO integration regulates rGO production,the comparative experiments of GO and three Shewanella strains were carried out.Fourier-transform infrared spectroscopy,X-ray photoelectron spectroscopy,Raman spectroscopy,and atomic force microscopy were used to characterize the reduction degree and the aggregation degree.The results showed that a spontaneous aggregation of GO and Shewanella into the condensed entity occurred within 36 h.A positive linear correlation was established,linking three indexes of the aggregation potential,the bacterial reduction ability,and the reduction degree(ID/IG)comprehensively.
For a broader understanding of uranium migration affected by microorganisms in natural anaerobic environment,the bioreduction of uranium(Ⅵ)(U(Ⅵ))was revealed in Bacillus thuringiensis,a dominant bacterium strain with potential of uranium-tolerant isolated from uranium contaminated soil.The reduction behavior was systematically investigated by the quantitative analysis of U(Ⅳ)in bacteria,and mechanism was inferred from the pathway of electron transmission.Under anaerobic conditions,appropriate biomass and sodium lactate as electron donor,reduction behavior of U(Ⅵ)induced by B.thuringiensis was restricted by the activity of lactate dehydrogenase,which was directly affected by the initial pH,temperature and initial U(Ⅵ)concentration of bioreduction system.Bioreduction of U(Ⅵ)was driven by the generation of nicotinamide adenine dinucleotide(NADH)from enzymatic reaction of sodium lactate with various dehydrogenase.The transmission of the electrons from bacteria to U(Ⅵ)was mainly supported by the intracellular NADH dehydrogenase-ubiquinone system,this process could maintain the biological activity of cells.
Hexavalent uranium(U(VI))can be immobilized by various microbes.The role of extracellular polymeric substances(EPS)in U(VI)immobilization has not been quantified.This work provides a model framework to quantify the contributions of three processes involved in EPS-mediated U(VI)immobilization:adsorption,bioreduction and desorption.Loosely associated EPS was extracted from a pure bacterial strain,Klebsiella sp.J1,and then exposed to H_(2) and O_(2)(no bioreduction control)to immobilize U(VI)in batch experiments.U(VI)immobilization was faster when exposed to H_(2) than O_(2) and stabilized at 94%for H_(2) and 85%for O_(2),respectively.The non-equilibrium data from the H_(2) experiments were best simulated by a kinetic model consisting of pseudo-second-order adsorption(ka=2.87×10^(−3) g EPS·(mg U)^(−1)·min^(−1)),first-order bioreduction(kb=0.112 min−1)and first-order desorption(kd=7.00×10^(−3) min^(−1))and fitted the experimental data with R^(2) of 0.999.While adsorption was dominant in the first minute of the experiments with H_(2),bioreduction was dominant from the second minute to the 50th min.After 50 min,adsorption was negligible,and bioreduction was balanced by desorption.This work also provides the first set of equilibrium data for U(VI)adsorption by EPS alone.The equilibrium experiments with O_(2) were well simulated by both the Langmuir isotherm and the Freundlich isotherm,suggesting multiple mechanisms involved in the interactions between U(VI)and EPS.The thermodynamic study indicated that the adsorption of U(VI)onto EPS was endothermic,spontaneous and favorable at higher temperatures.
Chen ZhouErmias Gebrekrstos TesfamariamYouneng TangAng Li
The rapid crystal growth of metal halide perovskite(MHP)nanocrystals inevitably leads to the generation of abundant crystal defects in the lattice.Here,defects-mediated long-lived charges and accompanying room-temperature persistent luminescence are demonstrated to be a general phenomenon in MHP nanocrystals.Density functional theory calculations suggest that the collaboration of Schottky and point defects enables upward cascading depletion for electron transfer in MHP nanocrystals,leading to the generation of long-lived photoexcited charges with lifetimes over 30 min.The excellent optical properties including the presence of long-lived charges,high charge separation efficiency,and broad absorption in the visible region make MHPs ideal candidates for both photocatalysis and photobiocatalysis.The MHPs were further integrated with enzymes to construct a light-driven biosynthetic system for the selective production of fine chemicals from CO_(2)with solar energy.The biosynthetic system can produce formate with a quantum yield of 3.24%,much higher than that of plants(∼0.2-1.6%).These findings will benefit the understanding of the optoelectronic properties of MHPs and further provide opportunities for the development of biosynthetic systems for solar-to-chemical synthesis.
Jie WangNa ChenWenjie WangZhiheng LiBolong HuangYanbing YangQuan Yuan
The compost-derived humic substances(HS)can function as electron mediators for promoting hematite bioreduction because of its redox capacity.Humification process can affect redox capacities of compost-derived HS by changing its intrinsic structure.However,the redox properties of compost-derived HS link-ing with hematite bioreduction during composting still remain unclear.Herein,we investigated the redox capacities of compost-derived HS,and assessed the responses of the redox capacities to the hematite bioreduction.The result showed that compost-derived HS(i.e.,humic acids(HA)and fulvic acids(FA))were able to accept electrons from Shewanella oneidensis MR-1,and the electron accepting capacity was increased during composting.Furthermore,it could be functioned as electron mediators for promoting the hematite bioreduction,achieving 1.19-2.15 times compared with the control experience.Not only the aromatic structures(quinone)but also the non-quinone structures such as nitrogen-and sulfur-containing functional moieties were served as the redox-active functional groups of compost-derived HS.Our work proved that the aromatic functional groups and the heteroatom structures(especially N)were important to the hematite bioreduction.This study highlights the redox-active properties of compost-derived HS and its impact on the microbial reduction of iron mineral.Redox capacity of compost-derived HS might mitigate the environmental risk of contaminants when the composting production was added into the contaminated soils as low-cost repair materials.
Chao YangLin-Xiao HouBei-Dou XiLi-An HouXiao-Song He