The stable long-distance transmission of radio-frequency(RF)signals holds significant importance from various aspects,including the comparison of optical frequency standards,remote monitoring and control,scientific research and experiments,and RF spectrum management.We demonstrate a scheme where an ultrastable frequency signal was transmitted over a 50 km coiled fiber.The optical RF signal is generated using a two-section distributed feedback(DFB)laser for direct modulation based on the reconstruction equivalent chirp(REC)technique.The 3-dB modulation bandwidth of the two-section DFB laser is 18 GHz and the residual phase noise of-122.87 dBc/Hz is achieved at 10-Hz offset frequency.We report a short-term stability of 1.62×10^(-14)at an average time of 1 s and a long-term stability of 6.55×10^(-18)at the measurement time of 62,000 s when applying current to the front section of the DFB laser.By applying power to both sections,the stability of the system improves to 4.42×10^(-18)within a testing period of 56,737 s.Despite applying temperature variations to the transmission link,long-term stability of 8.63×10^(-18)at 23.9 h can still be achieved.