The molybdenum carbide(Mo_(2)C)has been regarded as one of the most cost-efficient and stable electrocatalyst for the hydrogen evolution reaction(HER)by the virtue of its Pt-like electronic structures.However,the inherent limitation of high density of empty valence band significantly reduces its catalytic reactivity by reason of strong hydrogen desorption resistance.Herein,we propose a multiscale confinement synthesis method to design the nitrogen-rich Mo_(2)C for modulating the band structure via decomposing the pre-coordination bonded polymer in a pressure-tight tube sealing system.Pre-bonded c/N-Mo in the coordination precursor constructs a micro-confinement space,enabling the homogeneous nitrogenization in-situ happened during the formation of Mo_(2)C.Simultaneously,the evolved gases from the precursor decomposition in tube sealing system establish a macro-confinement environment,preventing the lattice N escape and further endowing a continuous nitridation.Combining the multiscale confinement effects,the nitrogen-rich Mo2C displays as high as 25%N-Mo concentration in carbide lattice,leading to a satisfactory band structure.Accordingly,the constructed nitrogen-rich Mo_(2)C reveals an adorable catalytic activity for HER in both alkaline and acid solution.It is anticipated that the multiscale confinement synthesis strategy presents guideline for the rational design of electrocatalysts and beyond.
The nitridation reaction of calcium carbide and N_(2) at high temperatures is the key step in the production of lime-nitrogen.However,the challenges faced by this process,such as high energy consumption and poor product quality,are mainly attributed to the lack of profound understanding of the reaction.This study aimed to improve this process by investigating the non-isothermal kinetics and reaction characteristics of calcium carbide nitridation reaction at different heating rates(10,15,20,and 30℃·min^(-1))using thermogravimetric analysis.The kinetic equation for the nitridation reaction of additive-free calcium carbide sample was obtained by combining model-free methods and model-fitting method.The effect of different calcium-based additives(CaCl_(2) and CaF_(2))on the reaction was also investigated.The results showed that the calcium-based additives significantly reduced reaction temperature and activation energy E_(a) by about 40% with CaF_(2) and by 55%-60% with CaCl_(2).The reaction model f(α)was also changed from contracting volume(R3)to 3-D diffusion models with D3 for CaCl_(2) and D4 for CaF_(2).This study provides valuable information on the mechanism and kinetics of calcium carbide nitridation reaction and new insights into the improvement of the lime-nitrogen process using calcium-based additives.
Zhihan ZhangMengxiao YuXiaoyu ZhangJinli ZhangYou Han
L1_(0)-ordered FeNi alloy with a high uniaxial magnetic anisotropy and large magnetic moment is a promising candidate for rare-earth-free permanent magnets applications.However,the synthesis of this chemically ordered phase remains a longstanding challenge because of its low chemical order-disorder transition temperature(200-320℃).Although a non-equilibrium synthetic route based on a nitrogen topotactic reaction has been proposed as a valid approach,the volume fraction and degree of chemical ordering of the product phase are limited.Herein,we propose a promising approach that promotes the efficient formation of L1_(0)-ordered nitride phase in FeNi nanopowders by introducing a quenching treatment during a low-oxygen induction thermal plasma process.The quenched FeNi nanopowders possessed much smaller powder sizes(40.4 vs 74.0 nm),exhibited higher number densities of nanotwins(39.8%vs 24.1%)and formed much larger volume fraction(33.6 wt.%vs 0.6 wt.%)of ordered phase than the unquenched nanopowders.Notably,quenching-induced high-density nanotwins led to the dominant coverage of serrated{001}crystal facets over the surfaces of the FeNi nanopowders.Such unique features substantially accelerated the formation of the L1_(0)-ordered nitride phase in the FeNi nanopowders because the{001}crystallographic orientation had the highest nitrogen diffusivity.This work provides not only a valid synthetic approach for mass production of the L10-ordered nitride phase in FeNi nanopowders but also novel insights into the crystal-defect-assisted nitridation of nanomaterials.
Homogenization heat treatment is a key process to remove the micro-segregation and re-dissolve the undesired phases for wrought superalloy.The oxidation behavior of the wrought superalloy during the high-temperature homogenization process,however,was rarely studied.The oxidation film evolution and growth kinetics of an as-cast superalloy Rene 65 during the homogenization were systematically studied.The oxide film consists of Cr_(2)O_(3) external oxidation layer and dendritic TiO_(2) and Al_(2)O_(3) internal oxidation layer.And the growth kinetics of the oxide film followed a parabolic law.Internal nitridation occurs during the oxidation process,and TiN is apparently formed at the tip of internal oxidation layer.The originally formed TiN can be transformed into TiO_(2) or retained with the progress of oxidation.Meanwhile,the TiN is newly formed in the deeper matrix at the new oxidation-layer tip.Thermodynamic analyses revealed that there is a competition between the oxidation and nitridation.Nitridation can occur when the partial pressure of nitrogen exceeds the threshold of nitridation and the critical partial pressure ratio of nitrogen and oxygen.
As a general problem in the field of batteries,materials produced on a large industrial scale usually possess unsatisfactory electrochemical performances.Among them,manganese-based aqueous rechargeable zinc-ion batteries(ARZBs)have been emerging as promising large-scale energy storage systems owing to their high energy densities,low manufacturing cost and intrinsic high safety.However,the direct application of industrial-scale Mn2O3(MO)cathode exhibits poor electrochemical performance especially at high current rates.Herein,a highly reversible Mn-based cathode is developed from the industrial-scale MO by nitridation and following electrochemical oxidation,which triples the ion diffusion rate and greatly promotes the charge transfer.Notably,the cathode delivers a capacity of 161 m Ah g^(-1) at a high current density of 10 A g^(-1),nearly-three times the capacity of pristine MO(60 m Ah g^(-1)).Impressive specific capacity(243.4 m Ah g^(-1))is obtained without Mn^(2+) additive added in the electrolyte,much superior to the pristine MO(124.5 m Ah g^(-1)),suggesting its enhanced reaction kinetics and structural stability.In addition,it possesses an outstanding energy output of 368.4 Wh kg^(-1) at 387.8 W kg^(-1),which exceeds many of reported cathodes in ARZBs,providing new opportunities for the large-scale application of highperformance and low-cost ARZBs.
The effect of annealing temperature(TA) at600-900℃ on structure and magnetic properties of the melt-spun Sm_(8.6)Fe_(85.9)Co_(4.3)Zr_(1.2) alloys and its nitrides was investigated.Results show that the melt-spun powder is TbCu7-type SmFe_(9) single phase.X-ray diffractometer(XRD) Rietveld refinement shows that the lattice parameter a increases,c and c/a decrease with the increase in T_(A) at600-700℃.This is due to the tendency of nitrogen entering into the 3f site(1/2,0,0) during the nitridation process,which is good for the magnetic properties.The phase transforms from TbCu7-type SmFe_(9) to Th_(2)Zn_(17)-type Sm_(2)Fe_(17) at above 800 0C.Scanning electron microscopy(SEM) images show that the amount of surface defects of melt-spun powder which are harmful for magnetic properties decreases at first and then increases as TA increases.The coercivity(H_(cj)) and maximum magnetic energy product((BH)_(max)) of its nitrides increase first and then decrease as a function of TA.And the remanence(B_(r))always shows a decrease.The optimal magnetic properties of H_(cj)=748 kA·m^(-1),B_(r)=0.92 T,(BH)_(max)=118 kJ·m^(-3) are obtained by annealing at 675℃ for 2 h and then nitriding at 460℃ for 10 h.