Riemann (1859) had proved four theorems: analytic continuation ζ(s), functional equation ξ(z)=G(s)ζ(s)(s=1/2+iz, z=t−i(σ−1/2)), product expression ξ1(z)and Riemann-Siegel formula Z(z), and proposed Riemann conjecture (RC): All roots of ξ(z)are real. We have calculated ξand ζ, and found that ξ(z)is alternative oscillation, which intuitively implies RC, and the property of ζ(s)is not good. Therefore Riemann’s direction is correct, but he used the same notation ξ(t)=ξ1(t)to confuse two concepts. So the product expression only can be used in contraction. We find that if ξhas complex roots, then its structure is destroyed, so RC holds. In our proof, using Riemann’s four theorems is sufficient, needn’t cite other results. Hilbert (1900) proposed Riemann hypothesis (RH): The non-trivial roots of ζhave real part 1/2. Of course, RH also holds, but can not be proved directly by ζ(s).
Dear Editor,This letter investigates the stability of n-dimensional nonlinear fractional differential systems with Riemann-Liouville derivative.By using the Mittag-Leffler function,Laplace transform and the Gronwall-Bellman lemma,one sufficient condition is attained for the asymptotical stability of a class of nonlinear fractional differential systems whose order lies in(0,2).According to this theory,if the nonlinear term satisfies some conditions,then the stability condition for nonlinear fractional differential systems is the same as the ones for corresponding linear systems.Two examples are provided to illustrate the applications of our result.