We modeled foraging habitats of Hume’s Pheasant (Syrmaticus humiae) on a macro-habitat level using ArcGIS in an attempt to provide scientific reference for management and restoration of habitats. Field work was conducted from March to April in 2006 and 2008, and from October to November in 2005 and 2008 in Dazhong Mountain, Yunnan Province, southwestern China. The selection of ecological factors was estimated by means of a resource selection index, distance analysis and the method of hierarchical habitat selection. The foraging habitat patches were modeled spatially by ArcGIS. The results show that actual and potential foraging patches overlapped considerably in spring and autumn. The number and total areas of patches in the autumn were smaller than those in the spring. The minimum and average areas of patches in the autumn were larger than those in the spring, while the maximum areas of actual and potential foraging patches in the autumn were equal to those in the spring. Similarity in the selection for survival and safety consideration in both seasons was the main strategy for landscape factors of habitats by Hume’s Pheasant, while seasonal difference in selecting a landscape matrix was their secondary strategy, affecting landscape factors in the habitat. Changes of foraging patches in both seasons reflect a difference of resources requirement by the bird. Fragmentation and miniaturization of foraging patches would result in the formation of a meta-population of Hume’s Pheasant.