刘玉
- 作品数:14 被引量:226H指数:8
- 供职机构:哈尔滨工程大学信息与通信工程学院更多>>
- 发文基金:中国博士后科学基金国家教育部博士点基金黑龙江省博士后基金更多>>
- 相关领域:自动化与计算机技术机械工程电气工程更多>>
- 基于最大小波奇异谱的轴承故障诊断方法被引量:6
- 2010年
- 研究小波奇异谱在轴承故障诊断中的应用问题,针对小波奇异谱熵无法有效实现故障诊断的不足,提出以最大小波奇异谱为特征的轴承故障诊断方法。该方法利用小波变换后的系数矩阵的最大奇异值作为故障诊断特征,并将试验结果与以小波奇异谱熵为特征的方法进行比较。结果表明,该方法在识别性能上有显著提高。试验从小波基、窗口宽度两个层面对该方法的诊断性能进行了分析,证明该方法具有较强的稳定性和鲁棒性。
- 陶新民徐晶刘兴丽刘玉
- 关键词:故障诊断小波变换
- 混合变异克隆选择多目标优化算法被引量:7
- 2011年
- 研究多目标优化问题,针对提高算法的快速性,提出一种混合变异克隆选择多目标优化算法。进化在三个抗体群中进行,不同的抗体群采用不同的变异算子,并通过外部记忆抗体群的更新,来保留进化的最优抗体,避免算法进化后期出现退化现象。算法采用的三种变异算子:高频大尺度高斯变异算子带有振荡性质,能够对Pareto最优解区域进行勘探,单基因小尺度衰减的高斯变异算子能够使优化结果逼近Pareto最优解,均匀变异算子使算法具有局部逃逸能力,能够保证解的多样性。将算法和经典的NSGA-II、ε-MOEA算法以及单一变异的多目标克隆选择算法(MCSA)进行性能比较,结果证明新算法具有较好的快速搜索性能和鲁棒性。
- 陶新民刘玉付丹丹毕思明
- 关键词:多目标优化克隆选择
- 不均衡数据下基于阴性免疫的过抽样新算法被引量:12
- 2010年
- 为提高不均衡数据集下算法分类性能,提出一种基于阴性免疫的过抽样算法.该算法利用阴性免疫实现少数类样本空间覆盖,以生成的检测器中心为人工生成的少数类样本.由于该算法利用的是多数类样本信息生成少数类样本,避免了人工少数类过抽样技术(SMOTE)生成的人工样本缺乏空间代表性的不足.通过实验将此算法与SMOTE算法及其改进算法进行比较,结果表明,该算法不仅有效提高了少数类样本的分类性能,而且总体分类性能也有了显著提高.
- 陶新民徐晶童智靖刘玉
- 关键词:不均衡数据
- 一种改进的粒子群和K均值混合聚类算法被引量:84
- 2010年
- 该文针对K均值聚类算法存在的缺点,提出一种改进的粒子群优化(PSO)和K均值混合聚类算法。该算法在运行过程中通过引入小概率随机变异操作增强种群的多样性,提高了混合聚类算法全局搜索能力,并根据群体适应度方差来确定K均值算法操作时机,增强算法局部精确搜索能力的同时缩短了收敛时间。将此算法与K均值聚类算法、基于PSO聚类算法和基于传统的粒子群K均值聚类算法进行比较,数据实验证明,该算法有较好的全局收敛性,不仅能有效地克服其他算法易陷入局部极小值的缺点,而且全局收敛能力和收敛速度都有显著提高。
- 陶新民徐晶杨立标刘玉
- 关键词:K均值算法粒子群优化算法
- 定向多尺度变异克隆选择优化算法被引量:9
- 2011年
- 提出一种定向多尺度变异克隆选择优化算法.为了实现抗体间信息共享,算法利用定向进化机制引导抗体向着抗体群最优解区域逼近.采用多尺度高斯变异机制,在算法初期利用大尺度振荡变异实现了全局最优解空间的快速定位.随着适应值的提升,小尺度变异会随之减低,使得算法在进化后期通过小尺度变异完成局部精确解的搜索.将算法应用到5个经典函数优化问题,结果表明,该算法不仅具有更快的收敛速度,而且全局解搜索能力和稳定性均有显著提高.
- 陶新民刘福荣刘玉付丹丹
- 关键词:克隆选择定向进化
- 基于GARCH模型MSVM的轴承故障诊断方法被引量:9
- 2010年
- 针对振动信号因非平稳性导致自回归(AR)模型无法有效描述信号特征的不足,提出一种基于广义自回归条件异方差(GARCH)模型多类支持向量机(MSVM)的故障诊断方法。该方法首先利用GARCH模型拟合各种故障信号,将所得模型参数作为故障诊断特征,以MSVM作为故障诊断方法。试验结果验证了GARCH模型方法的可行性和有效性,同时将该方法同基于AR模型的方法及其改进方法进行比较,结果表明该方法在诊断率及诊断时间上都有明显提高。
- 陶新民徐晶杨立标刘玉
- 关键词:多类支持向量机
- 基于多尺度并行免疫克隆优化聚类算法被引量:4
- 2012年
- 针对无监督分类问题,提出一种多尺度并行免疫克隆优化聚类算法.算法中,进化在多个子群之间并行进行,不同子群的抗体根据子群适应度采用不同变异尺度.进化初期,利用大尺度变异子群实现全局最优解空间的快速定位,同时变异尺度随着适应值的提升逐渐降低;进化后期,利用小尺度变异子群完成局部解空间的精确搜索.将新算法与其他聚类算法进行比较,所得结果表明新算法具有较好的聚类性能和鲁棒性.
- 陶新民付丹丹刘福荣刘玉
- 关键词:聚类算法变异算子
- 一种多尺度协同变异的粒子群优化算法被引量:48
- 2012年
- 为了改善粒子群算法易早熟收敛、精度低等缺点,提出一种多尺度协同变异的粒子群优化算法,并证明了该算法以概率1收敛到全局最优解.算法采用多尺度高斯变异机制实现局部解逃逸.在算法初期阶段,利用大尺度变异及均匀变异算子实现全局最优解空间的快速定位;随着适应值的提升,变异尺度随之降低;最终在算法后期阶段,利用小尺度变异算子完成局部精确解空间的搜索.将算法应用6个典型复杂函数优化问题,并同其他带变异操作的PSO算法比较,结果表明,该算法在收敛速度及稳定性上有显著提高.
- 陶新民刘福荣刘玉童智靖
- 关键词:粒子群算法早熟收敛多尺度适应度
- 改进的多种群协同进化微粒群优化算法被引量:19
- 2009年
- 提出一种改进的基于多种群协同进化的微粒群优化算法(PSO).该算法首先利用免疫算法实现解空间的均匀划分,增加了算法稳定性和全局搜索能力.在运行过程中,通过种群进化信息生成解优胜区域,指导变异生成的微粒群向最优解子空间逼近,提高算法逃出局部最优的能力.将此算法与PSO算法和多种群协同进化微粒群算法进行比较,数据实验证明,该算法不仅能有效地克服其他算法易陷入局部极小值的缺点,而且全局收敛能力和稳定性均有显著提高.
- 陶新民徐晶杨立标刘玉
- 关键词:粒子群算法多种群协同进化免疫算法
- 基于ODR和BSMOTE结合的不均衡数据SVM分类算法被引量:22
- 2011年
- 针对传统的支持向量机(SVM)算法在数据不均衡的情况下分类效果不理想的缺陷,为了提高SVM算法在不均衡数据集下的分类性能,提出一种新型的逐级优化递减欠采样算法.该算法去除样本中大量重叠的冗余和噪声样本,使得在减少数据的同时保留更多的有用信息,并且与边界人工少数类过采样算法相结合实现训练样本数据集的均衡.实验表明,该算法不但能有效提高SVM算法在不均衡数据中少数类的分类性能,而且总体分类性能也有所提高.
- 陶新民童智靖刘玉付丹丹
- 关键词:不均衡数据支持向量机算法