为精确监测和评估小麦在成熟期受连阴雨胁迫后穗霉变发芽情况。该研究以2023年5月底黄淮西部一次大范围连阴雨天气过程为例,从气象致灾危险性和遥感变量表征小麦承灾能力两方面,综合应用气象和多源卫星遥感资料,构建模型因子。分别用Spearman和Pearson相关性分析,以及ReliefF特征选择方法进行关键因子筛选,形成3组因子,分别应用Logistic回归等5种分类器和多元线性回归等5种回归方法构建模型,实现了对灾变的精准识别、程度分级和指数回归预测。通过对不同模型性能评估和各因子影响的对比分析,结果表明:所选分类器在气象与遥感因子协同及各独自建模情形下,均能识别穗发芽霉变并准确预测其等级,识别的准确率(accuracy,AC)在0.649~0.811,等级预测的AC在0.432~0.622之间;在穗发芽霉变指数(ear germination and moldiness index,EGMI)预测方面,构建的PCFXGBR模型表现最佳,R^(2)为0.25,均方根误差(root mean square error,RMSE)为15.68,平均绝对误差(mean absolute error,MAE)为11.93。研究发现,遥感模型在灾变识别上更具优势,而气象模型在灾变程度分级上更优,结合两者的气象-遥感协同模型性能最佳。该研究成果为小麦连阴雨减损与灾后评估提供了有力的技术支持。
基于花生生长中后期2020年8月1日和15日两个时相高分多光谱数据,构建40个作物分类遥感特征,采用ReliefF-Pearson方法优选出15个特征,构造作物可分的4种特征空间。采用最大似然分类法、支持向量机和随机森林分类器,分别耦合4种特征空间,开展作物分类对比试验,进行分类精度和景观评价提出作物双时相遥感分类模型(dual-temporal remote sensing classification model for crop,C-DRSC)。结果表明:该模型具有较高的作物分类和花生识别能力,作物分类总体精度和Kappa系数分别为93.25%和0.89,平均形状指数和平均斑块分维指数分别为1.33和1.13;花生识别的用户精度和制图精度分别为96.20%和96.32%,平均形状指数和平均斑块分维指数分别为1.27和1.11。利用该模型在黄淮海地区的4个花生主产县开展夏花生种植面积遥感测算,与统计面积相比,面积测算相对误差为±16.25%,决定系数为0.9778(达到0.01显著性水平),模型具有较好的适用性。