您的位置: 专家智库 > >

孙哲

作品数:10 被引量:40H指数:3
供职机构:燕山大学信息科学与工程学院更多>>
发文基金:河北省自然科学基金国家自然科学基金更多>>
相关领域:自动化与计算机技术更多>>

文献类型

  • 10篇中文期刊文章

领域

  • 10篇自动化与计算...

主题

  • 5篇人脸
  • 5篇子空间
  • 4篇人脸识别
  • 4篇人脸识别算法
  • 2篇主成分
  • 2篇主成分分析
  • 2篇子空间学习
  • 2篇目标跟踪
  • 1篇单样本
  • 1篇单样本人脸识...
  • 1篇调制
  • 1篇样本加权
  • 1篇原子
  • 1篇原子-分子
  • 1篇正则
  • 1篇人脸特征
  • 1篇视觉显著性
  • 1篇排斥
  • 1篇亲属
  • 1篇亲属关系

机构

  • 10篇燕山大学

作者

  • 10篇胡正平
  • 10篇王蒙
  • 10篇孙哲
  • 3篇何薇
  • 2篇白帆
  • 2篇陈俊岭
  • 1篇任大伟
  • 1篇赵淑欢

传媒

  • 5篇信号处理
  • 4篇模式识别与人...
  • 1篇燕山大学学报

年份

  • 1篇2018
  • 6篇2017
  • 3篇2016
10 条 记 录,以下是 1-10
排序方式:
基于局部特征融合的邻域排斥度量学习亲属关系认证算法
2017年
针对如何利用人脸图像局部特征进行亲属关系认证的问题,文中提出基于局部特征融合的邻域排斥度量学习亲属关系认证算法.首先抽取脸部的关键区域,分别对每块关键区域提取纹理和肤色特征.然后进行特征融合.最后引入度量学习,学习能使具有亲属关系样本距离变小、非亲属关系样本距离变大的变换矩阵,利用已有数据样本间相似程度的先验知识学习最佳相似性度量,更好地刻画亲属样本间的相似关系.在Kin Face W-I和KinFace W-II数据库中的实验表明,相比已有的亲属关系认证算法,文中算法性能更好.
胡正平郭增洁王蒙孙哲
深层融合对称子空间学习稀疏特征提取模型被引量:3
2017年
提出深层融合对称子空间学习稀疏特征提取模型.在深度子空间基础上,引入对称性、稀疏性约束,通过构建深层映射网络,完成深层特征提取.首先根据最小化重构误差准则构建基本子空间模型,并在构建过程中加入对称性、稀疏性约束.然后对基本子空间模型进行深度化改造,得到深层对称稀疏子空间模型.最后将各个层特征进行融合编码,得到深层特征提取结果.在人脸数据库及目标数据库上的实验表明,文中算法可以取得较高识别率及较好光照、表情、人脸朝向的鲁棒性.相比卷积神经网络等深度学习框架,文中算法具有结构简洁、收敛速度快等优点.
胡正平陈俊岭王蒙孙哲
深度子空间联合稀疏表示单样本人脸识别算法被引量:2
2018年
针对人脸识别中小样本数据集缺少分布信息难以获得鲁棒图像表示问题,提出深度子空间联合稀疏表示单样本人脸识别算法。首先,使用深度加权子空间构建抽象特征描述网络,获得单样本人脸深层抽象描述子。进而利用样本类间差异信息,引入邻域排斥度量学习实现低维度有鉴别力特征提取。最后基于协同表示分类器完成模式分类。在FERET、ORL、Multi_PIE等数据库上验证本文算法在单样本人脸识别问题上的有效性,鉴于深度子空间强大的特征描述能力,即使训练样本集很小,依然可以保证训练样本能够紧凑的表示有变化的测试样本。
胡正平何薇王蒙孙哲任大伟
关键词:单样本人脸识别
基于全局与局部结构反稀疏外观模型的目标跟踪算法被引量:2
2016年
为了提高稀疏表示跟踪模型性能,提出基于全局与局部结构反稀疏外观模型的目标跟踪算法(GLIS).首先采用反稀疏表达方式一次求解优化问题,计算所有粒子权重以提升算法实时性.然后,提出基于联合判别相似度图(JDS map)排名机制以提升算法鲁棒性,将候选目标分块并分别计算加权稀疏解,联结不同权重的局部块为整体并计算其稀疏解.最后采用联合机制将2种稀疏解合并为JDS map.在跟踪过程中,采用双重模板更新机制更新目标模板及权重模板.实验表明,在复杂环境下,文中算法仍然可以准确跟踪目标.
胡正平谢荣路王蒙孙哲
关键词:目标跟踪
多层次深度网络融合人脸识别算法被引量:14
2017年
深度学习模型可以获得更具有鉴别力的人脸特征,提高人脸识别性能.因此,文中结合深度学习思想,提出多层次深度网络融合特征提取模型.在深度子空间基础上,采用"卷积-池化"网络结构,在降低特征维度的同时保留图像纹理信息,并且获得局部转换鲁棒性.同时,利用人脸标定算法获得人脸特征点,并以此划分人脸区域为5个局部人脸块.基于多层次分类策略,利用全局人脸训练全局网络,完成测试样本预分类.利用局部人脸块训练局部网络,在候选类别中完成最终分类.实验表明,结合局部特征与全局特征的模型可以取得较好的识别率,对光照、表情、姿态,遮挡等影响因素具有较好的鲁棒性,并且加入池化层及两步判别的算法可以有效提高识别率.
胡正平何薇王蒙孙哲
关键词:子空间
有监督低秩子空间恢复的正则鲁棒稀疏表示人脸识别算法被引量:2
2016年
针对训练样本和测试样本均存在光照及遮挡时,破坏图像低秩结构问题,本文提出基于监督低秩子空间恢复的正则鲁棒稀疏表示人脸识别算法。首先,将所有训练样本构造成矩阵D,对矩阵D进行监督低秩矩阵分解,分解为低秩类相关结构A,低秩类内差异结构B和稀疏误差结构E;然后用主成分分析方法找到类相关结构A低秩子空间的变换矩阵;再通过变换矩阵将训练样本和测试样本投影到低秩子空间;最后,在低秩子空间中,通过正则鲁棒稀疏编码进行加权分类识别。在AR和Extended Yale B公开人脸数据库上的实验结果验证本文算法的有效性及鲁棒性。
胡正平白帆王蒙孙哲
关键词:人脸识别主成分分析
原子-分子字典结合的联合扩展加权稀疏表示人脸识别算法被引量:6
2016年
针对训练样本字典学习仅包含全局信息、缺乏局部信息的不足,引入与类别相关的原子字典,提出基于原子与分子字典联合扩展的加权稀疏表示人脸识别方法。首先,对各类训练样本进行PCA学习,得到带标记的训练样本基,构造PCA基原子字典,同时将训练样本字典作为分子字典。进而,利用原子字典与分子字典结合得到扩展字典模型。测试时,根据测试样本与扩展字典基之间的距离进行加权得到与当前测试样本关联的重构字典集,最后对测试样本稀疏重构,利用残差进行分类判别。为验证本文方法有效性,分别在AR、Georgia Tech和CMU PIE人脸数据库上进行实验。
胡正平白帆王蒙孙哲赵淑欢
关键词:人脸识别主成分分析样本加权
Gabor调制的深度多层子空间人脸特征提取算法被引量:6
2017年
人脸识别的关键在于特征提取,过去主要从完美的低维特征子空间来刻画高维图像,但是近年来深度学习模型为特征提取提供新方向。本文提出在Gabor特征描述子调制下的深度子空间模型,在深度子空间这一新型深度学习框架基础上,使用Gabor滤波器组处理图像,并构建深度特征提取多层网络,得到Gabor调制下的深层抽象特征。首先将传统的8个方向5个尺度的40个Gabor滤波器在尺度上进行压缩得到8个基本Gabor滤波器组;然后将经过Gabor滤波的描述特征分别送入深度化改造的子空间模型,得到图像的深层特征表示;其次将这些特征进行哈希编码,直方图分块,作为描述特征。本文在FERET、ORL、CMU_PIE等数据库上讨论加入Gabor滤波器调制后的深度多层子空间特征提取模型在人脸识别问题上性能的提升,实验结果表明,该算法可以取得较好的识别率,并对光照、表情、姿态等有很好的鲁棒性,能够弥补浅层网络易受训练图像影响的缺点。
胡正平何薇王蒙孙哲
关键词:子空间GABOR滤波器
深层融合度量子空间学习稀疏特征提取算法被引量:3
2017年
特征提取作为模式识别中的重要步骤,一直是图像处理研究的重点,逐渐兴起的深度学习理论,作为一种新的深层特征提取模型,越来越受到广大学者的关注。本文提出一种基于深层融合度量学习的稀疏特征提取算法,在深度学习的框架内,构建度量映射矩阵,对图像进行分层映射,最大化保留样本集类间区分信息,并且通过稀疏迭代来保证特征提取结果的稀疏性。首先构建图像集距离度量函数,然后通过求解最大化类间距离来确定最优度量映射矩阵,同时对特征映射结果进行L1范数稀疏迭代,提高噪声鲁棒性。然后对这个基本特征提取单元进行深度化改造,在第二层中进行同样操作,最终通过多层融合提取得到分层深度稀疏特征。相对于已有子空间方法,本文在特征映射过程中引入度量自学习机制,并着重对各个特征映射层进行视觉合理性稀疏约束,融合多层特征语义描述生成最终特征提取结果。在FERET、AR、Yale等经典人脸数据库以及MNIST、CIFAR-10等目标数据库上的实验结果表明,该算法可以取得较高的识别率以及较好的光照、表情、人脸朝向鲁棒性,并且相对于卷积神经网络等深度学习框架具有结构简洁、收敛速度快等优点。
胡正平陈俊岭王蒙孙哲
基于视觉显著图的结构反稀疏在线目标跟踪被引量:2
2017年
为提高稀疏跟踪器性能,提出一种在贝叶斯推论框架下的基于视觉显著图的结构反稀疏在线目标跟踪算法。首先将基于马尔可夫(Markov)模型的关联性视觉显著度检测算法用于当前帧并计算目标模板的显著图,其次提出全局与局部分块的结构外观模型表示候选目标,将显著图映射回每一个局部块并计算出对应的自适应权重,最后提出联合全局与局部稀疏解的度量准则度量候选目标与目标模板的相似度,从而确立在贝叶斯框架下对目标状态最佳估计。在跟踪过程中,采用反稀疏表达方式一次求解优化问题计算出所有粒子权重来提高算法效率。实验结果表明,本文算法具有良好的鲁棒性和实时性。
胡正平谢荣路王蒙孙哲
关键词:目标跟踪视觉显著性贝叶斯框架
共1页<1>
聚类工具0