王志龙
- 作品数:1 被引量:0H指数:0
- 供职机构:河北联合大学更多>>
- 发文基金:国家自然科学基金更多>>
- 相关领域:自动化与计算机技术更多>>
- 可生长仿生学习算法在机器人平衡控制中的研究
- 2014年
- 针对两轮机器人的运动平衡控制问题,提出一种基于Q学习的生长细胞结构(GCS)网络的仿生学习算法;GCS网络除了具有SOM网络的竞争机制外,它还可以通过新神经元的不断生长,自组织地进行演化,Q学习算法是一种无模型强化学习算法,它可以改善学习能力,但是它只适用于状态离散化的控制系统中;将GCS网络的生长特性应用到Q学习算法中,通过网络输出的获胜神经元的信息来优化Q值,实现了状态连续系统的无模型控制,并且在两轮机器人上做了仿真实验;结果表明,当神经元数为12个时,机器人才开始受控,但是机器人本体的倾角振荡角度过大,位移不受控制;当神经元数增加到25个时,机器人本体的倾角在很小的角度范围内波动(大约0.2°),位移大约在0.05m的位置达到平衡,机器人的运动平衡达到了很好的控制效果。
- 李福进王志龙任红格高建宇
- 关键词:Q学习两轮机器人