王皓
- 作品数:1 被引量:5H指数:1
- 供职机构:南京大学更多>>
- 发文基金:江苏省自然科学基金国家自然科学基金更多>>
- 相关领域:自动化与计算机技术更多>>
- 一种基于贝叶斯后验的异常值在线检测及置信度评估算法被引量:5
- 2017年
- 为识别一类更新速度快、变化趋势平缓、缺少人工类标的大数据量工业时间序列中所存在的异常值,提出了一种以贝叶斯后验为基础的异常值在线检测及置信度评估算法.算法将预测检测和假设检验相结合,首先建立时间序列自回归模型,然后对预测残差作基于贝叶斯原理的后验检验,用后验概率对数比确定序列中的异常值.为减少识别过程中的误判,在检测完成后,利用自组织映射神经网络计算状态转移概率,进一步对已标记的异常值进行置信度评估.通过定期更新模型,算法各参数能动态保持与数据变化规律同步,提高了检测的准确率.实验结果表明,该算法能够对时间序列异常值准确快速地进行在线检测,同时给出可靠的置信度评估,具有较高的实用价值.
- 孙栓柱宋蓓李春岩王皓
- 关键词:时间序列异常检测置信度评估